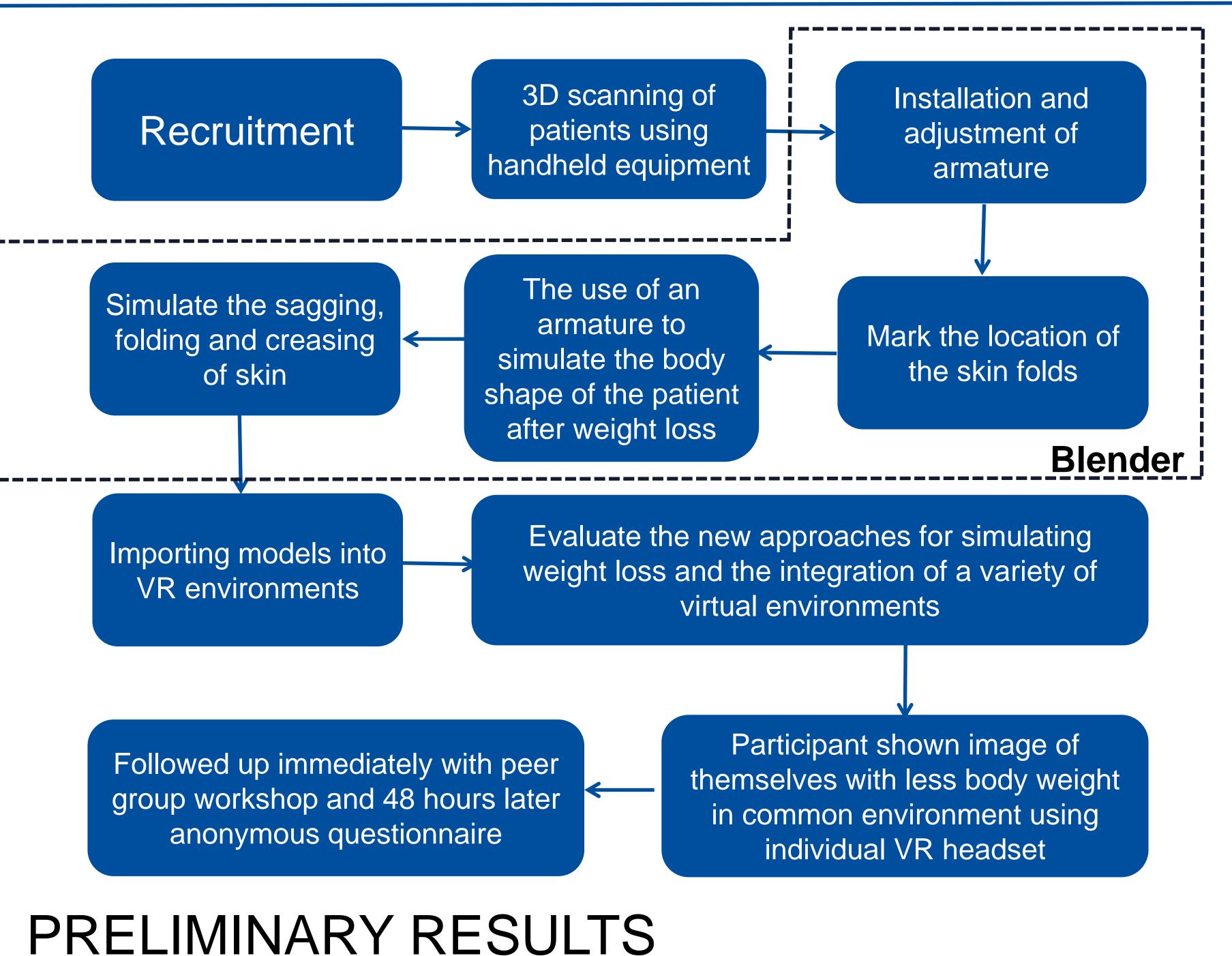
Imperial College London

ICCESS Imperial College Centre for Engagement and Simulation Science The Use of 3D Reconstruction and Virtual Reality to Support Prospective Bariatric Surgery Patients

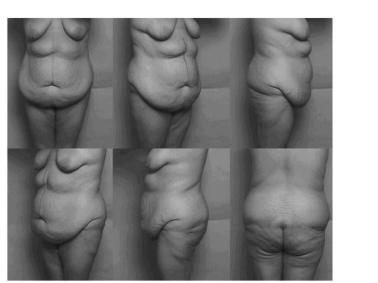

Wang Y, Assaf N & Bello F

Imperial College London

ABSTRACT

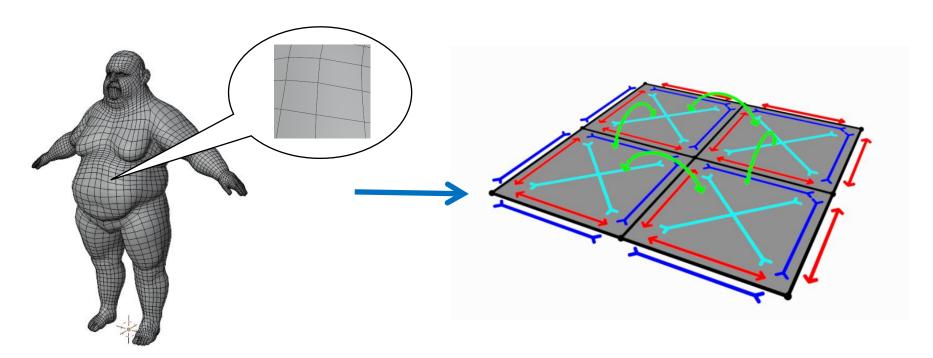
This study investigates the development of realistic simulation models in a virtual reality (VR) environment to depict the post-operative shape and appearance of bariatric surgery patients. The objective is to assist patients in visualising their long-term weight loss, fostering a positive body image. Comprehensive literature reviews were conducted to determine lipid distribution across different body parts and the appearance of skin folds after bariatric surgery^(1,2,3,4). These findings were integrated into a deformable simulation model capable of replicating the post-operative body shape and skin appearance accurately^(5,6). The research seeks to make a significant contribution to the fields of medical and health informatics, highlighting the potential of VR as a valuable tool in psychological therapies in healthcare⁽⁷⁾. Future work involves evaluating the impact of this VR-based approach on the patients' self-esteem and satisfaction with the surgery outcomes.

METHOD


INTRODUCTION

Bariatric surgery has become an increasingly popular and effective intervention for obesity, yielding significant long-term weight loss in patients⁽⁸⁾. However, adjusting to a new body image post-surgery presents psychological challenges that can influence self-esteem, body satisfaction, and overall success of the weight loss journey⁽⁹⁾. Leveraging the advances in virtual reality (VR) technology, this research aims to develop a highly accurate simulation model of the post-operative physical appearance of bariatric surgery patients to aid in building body images⁽¹⁰⁾.

The role of VR in healthcare has been an emerging area of interest, with its potential to facilitate rehabilitation, reduce anxiety, and improve patient education⁽⁹⁾. In the context of bariatric surgery, VR can be a powerful tool to help patients visualize and adapt to their new body image, thereby building confidence⁽¹⁰⁾.



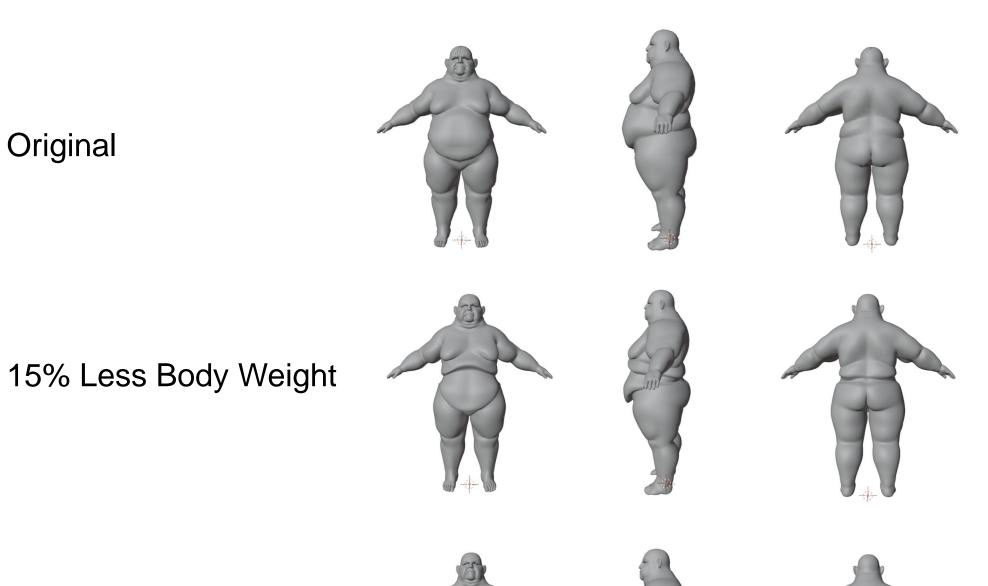

Fig 1. Lipid distribution in the body

Fig 2. Body appearance after bariatric surgery

25% Less Body Weight

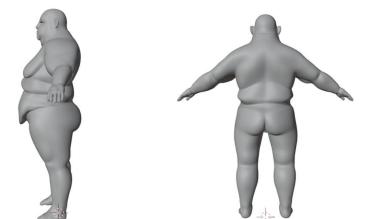


Fig 4. Original and post-bariatric surgery body image

FUTURE PLAN

- Complete pilot study testing the new approaches on various data sets and a range of new virtual environments
- Use this study to explore more deformable models to

Fig 5. Virtual Reality Rooms with 3D image

REFERENCES

1. Bazzocchi, A., Ponti, F., Cariani, S. et al. Visceral Fat and Body Composition Changes in a Female Population After RYGBP: a Two-Year Follow-Up by DXA. OBES SURG 25, 443–451 (2015).

2. Courcoulas AP, Christian NJ, Belle SH, et al. Weight Change and Health Outcomes at 3 Years After Bariatric Surgery Among Individuals With Severe Obesity. JAMA. 2013;310(22):2416–2425. doi:10.1001/jama.2013.280928

- 3. Iglesias, Martin MD*; Butron, Patricia MD*; Abarca, Leonardo MD†; Perez-Monzo,
- $M_{\rm ex}$ is $\Gamma_{\rm ex}$ de D'essee Medere Destrict As Asthered esset is Oless' ('s st'esset Destrict)

Fig 3. Mass-spring models for 3D modelling: Tension springs (blue), compression springs (red), shear springs (cyan), and angular bending springs (green).

simulate the body image of patients after bariatric surgery.

 Based on this method, continue to develop a more automated method to simulate the body image of patients after bariatric surgery.

• Conduct new patient study (after MRes project)

Acknowledgements

Agni Lahiri and Reza Haghighi-Osgouei, SiMMS Research Group

Mario F.*; de Rienzo-Madero, Beatriz*. An Anthropometric Classification of Body Contour Deformities After Massive Weight Loss. Annals of Plastic Surgery 65(2):p 129-134, August 2010. | DOI: 10.1097/SAP.0b013e3181c9c336

4. Song YA, Jean RD, Hurwitz D. A classification of countour deformities after bariatric weight loss: the Pittsburg rating scale. Plast Reconstr Surg. 2005;116:1535–1546. 5.U. Meier, O. López, C. Monserrat, M.C. Juan, M. Alcañiz, Real-time deformable models for surgery simulation: a survey, Computer Methods and Programs in Biomedicine, Volume 77, Issue 3, 2005, Pages 183-197, ISSN 0169-2607.

6. J. Zhang, Y. Zhong and C. Gu, "Deformable Models for Surgical Simulation: A Survey," in IEEE Reviews in Biomedical Engineering, vol. 11, pp. 143-164, 2018, doi: 10.1109/RBME.2017.2773521.

7. Haisley KR, Straw OJ, Müller DT, et al.: Feasibility of implementing a virtual reality program as an adjuvant tool for peri-operative pain control; results of a randomized controlled trial in minimally invasive foregut surgery. Complement Ther Med. 2020, 49:102356.10.1016/j.ctim.2020.102356

 Maggard MA, Shugarman LR, Suttorp M, et al.: Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005, 142:547-59. 10.7326/0003-4819-142-7-200504050-00013
Sheets CS, Peat CM, Berg KC, White EK, Bocchieri-Ricciardi L, Chen EY, Mitchell JE: Post-operative psychosocial predictors of outcome in bariatric surgery. Obes Surg. 2015, 25:330-45. 10.1007/s11695-014-1490-9

10. Paul L, van der Heiden C, Hoek HW: Cognitive behavioral therapy and predictors of weight loss in bariatric surgery patients. Curr Opin Psychiatry. 2017, 30:474-9.10.1097/YCO.00000000000359